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Abstract

Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. 
There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex 
evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae 
and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate 
dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial iso-
citrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species 
suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic 
isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that 
the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species 
that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid 
mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the 
bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation 
can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate 
dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct 
metabolic strategies and needs for reduced cofactors in particular environments.
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Significance
The evolutionary history complex of isocitrate dehydrogenase in Euglenozoa is entangled. Here, we map the distribution 
of these enzymes in all available kinetoplastid genomes, experimentally test their cofactor preference, and biochemically 
determine their localization in a set of selected trypanosomatids. We concluded that similarities in mitochondrial and 
glycosomal metabolism between species of Trypanosomatidae do not always correlate with their phylogenetic related-
ness implying that these traits might be shaped by convergent evolution.
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Introduction
Trypanosomatids are a diverse, widespread, and ecological-
ly important group of unicellular eukaryotes, i.e. protists, 
belonging to the class Kinetoplastea (Kostygov et al. 
2021, 2024). Most representatives of this group are mono-
xenous species (their life cycle is restricted to a single host, 
usually an insect) (Frolov et al. 2021). Conversely, dixenous 
species alternate hosts usually shuttling between leeches or 
insects and vertebrates or plants (Stuart et al. 2008; Lukeš 
et al. 2014).

The biochemistry of trypanosomatids reflects conditions 
in the ecological niche they occupy and the specificity of the 
substrates available for parasites’ growth and differenti-
ation. Moreover, dixenous species must cope with the con-
ditions of two different hosts. As such, they heavily rely on 
metabolic adaptation to different carbon sources, tempera-
tures, and other factors (Bringaud et al. 2006; Michels et al. 
2021). The genome comparison among kinetoplastids re-
vealed that the genetic background for canonical metabol-
ism in this group is similar with just a few exceptions of 
gene losses and gains that occurred independently several 
times in the evolution of these parasites (Porcel et al. 
2014; Verner et al. 2014; Škodová-Sveráková et al. 2015; 
Jackson et al. 2016; Opperdoes et al. 2016). However, 
the identification of a gene in the genome does not auto-
matically imply that its enzymatic product is functionally in-
volved in the metabolism of a given species (Coustou et al. 
2003; Saunders et al. 2011).

Isocitrate dehydrogenases (IDHs) are broadly distributed 
enzymes that, among trypanosomatids, have been mostly 
studied in dixenous parasites of vertebrates and plants, 
but not in the group as a whole (Fernández-Ramos et al. 
1999; Leroux et al. 2011; Giordana and Nowicki 2020). 
The IDHs catalyze oxidative decarboxylation of isocitrate 
into α-ketoglutarate (2-oxoglutarate) with the concomitant 
release of CO2 and the reduction of the cofactor NAD+ or 
NADP+. Most prokaryotes possess only NADP+-dependent 
IDHs, while eukaryotes can have both NADP+-dependent 
(IDH1 and IDH2) and NAD+-dependent (IDH3) enzymes 
(Spaans et al. 2015). The cofactor preference usually gov-
erns the localization of the enzyme within the cell. 
Whereas IDH1 and IDH2 operate in both cytosol and mito-
chondria, IDH3 was considered strictly mitochondrial en-
zyme involved in the Krebs or tricarboxylic acid (TCA) 
cycle (Cavalcanti et al. 2014). Moreover, in fungi, plants, 
and various protists, IDH isoenzymes may localize in other 
organelles, such as plastids, peroxisomes, or their specia-
lized versions, called glycosomes (Corpas et al. 1999; 
Vinekar et al. 2012). While in model eukaryotes, IDH3 pro-
duces NADH to supply the respiratory chain via complex I 
and to facilitate ATP synthesis via complex V (Qi et al. 
2008), IDH1 and IDH2 generate NADPH needed for the syn-
thesis of nucleotides, fatty acids, or cholesterol and cell 

protection against the redox stress (Jo et al. 2001; Koh 
et al. 2004). It is presumed that NAD+ dependency is an an-
cestral trait and the later switch to NADP+ is an adaptive 
evolutionary event enabling bacteria to survive in the 
energy-poor environment (Hurley et al. 1996; Wang et al. 
2015). As such, the cofactor preference of enzymes is cru-
cial for ensuring the proper regulation of metabolism. All 
IDH3s described so far are regulated allosterically (Lin and 
McAlister-Henn 2003; Chen et al. 2022). Conversely, in 
Escherichia coli, IDH1 and IDH2 are regulated by the phos-
phorylation of a single Ser in the active site preventing the 
isocitrate binding (Dean et al. 1989), whereas in mammals, 
the same amino acid interacts with a conserved Asp provid-
ing a feedback loop for self-regulation (Xu et al. 2004).

The genomes of Trypanosoma cruzi and Trypanosoma 
brucei, for which employment of a noncanonical TCA cycle 
has been reported (van Weelden et al. 2003; Villafraz et al. 
2021), encode two putative IDHs (IDH1 and IDH2). In T. cruzi, 
both enzymes were shown to depend on NADP+ (Leroux 
et al. 2011), while IDH1 of T. brucei showed activity with 
both NAD+ and NADP+ cofactors (Wang et al. 2017). IDH1 
of Trypanosoma spp. possesses a possible peroxisomal tar-
geting signal 1 (van Weelden et al. 2005; Colasante et al. 
2006) and was recently experimentally shown to localize to 
both mitochondrion and cytosol in T. brucei (Pyrih et al. 
2023). Complicating the situation even more, both the 
NADP+-dependent (related to IDH2) and NAD+-dependent 
(related to IDH3) isoforms with dual mitochondrial and cyto-
solic localization were described in Leishmania mexicana 
(Giordana and Nowicki 2020).

In this study, we map the distribution of IDH enzymes in 
all available kinetoplastid genomes, experimentally test 
their cofactor preference, and biochemically determine 
their localization in a set of selected trypanosomatids.

Results

Distribution and Origin of IDHs

We identified 90 IDH sequences in 49 kinetoplastid data sets 
(supplementary table S1, Supplementary Material online). To 
determine their affiliation to a specific class (IDH1, 2, or 3), we 
conducted a kinetoplastid-specific phylogenetic 
analysis (Fig. 1A). IDH1 was identified only in Bodo saltans, 
Paratrypanosoma confusum, T. brucei, T. cruzi, and 
Trypanosoma theileri. Conversely, IDH2 was omnipresent 
and IDH3 was found in a majority of species with the excep-
tion of representatives of genera Trypanosoma, Phytomonas, 
and Paratrypanosoma (Fig. 1B and C). Coexistence of all three 
IDHs was not documented in any of the studied kinetoplas-
tids. Our targeting predictions revealed that IDH2s and 
IDH3s are likely mitochondrial and cytosolic, respectively 
(Fig. 1; supplementary table S1, Supplementary Material
online). However, localization predictions for IDH1s differed 
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depending on the employed tool suggesting a dual 
localization of this isoenzyme.

To investigate origin and evolutionary history of IDH en-
zymes in kinetoplastids, we performed more comprehen-
sive phylogenetic analysis including other eukaryotes and 
prokaryotes (Fig. 2). Whereas IDH2 is presumably an ances-
tral eukaryotic ortholog of IDH, IDH1 and IDH3 appear to be 
acquired by lateral gene transfer from eukaryotes and bac-
teria by the common ancestor of kinetoplastids and after 
the split of Trypanosoma spp., respectively. IDH1 was 
nested in a large clade of obazoans and ciliates, and IDH3 
was gained from an unclear source of the Proteobacteria.

NADP+ Preference for IDH Activity

Firstly, we measured the IDH activity in cytosolic fractions 
of selected trypanosomatids with both cofactors 
(NADP+ and NAD+) (Fig. 3A; supplementary table S2, 

Supplementary Material online). Only in the case of 
Wallacemonas raviniae, the choice of cofactor did not 
affect activity (33.6 ± 1.9 U/mg for NAD+ and 43.9 ±  
7.9 U/mg for NADP+). In 12 other species (Angomonas 
deanei, Blechomonas ayalai, Blastocrithidia nonstop, 
Crithidia brevicula, Crithidia thermophila, Herpetomonas 
tarakana, Jaenimonas drosophilae, Leptomonas seymouri, 
Novymonas esmeraldas, Paratrypanosoma sp., Sergeia po-
dlipaevi, and T. brucei), we detected activities with both co-
factors, but NADP+ was strongly preferred. In the rest of our 
data set (five strains), the enzymatic activity was not de-
tected with NAD+. Activities of NAD+-dependent IDH in 
mitochondrial fraction were either not detectable or low 
(under 1 U/mg) for all tested trypanosomatids except for 
C. brevicula (1.0 ± 0.7 U/mg), J. drosophilae (5.9 ±  
1.6 U/mg), T. brucei (2.1 ± 0.8 U/mg), and W. raviniae 
(1.0 ± 0.3 U/mg) (Fig. 3B; supplementary table S2, 
Supplementary Material online).
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FIG. 1.—Phylogenetic analysis of A) all identified IDH proteins, B) IDH1 + 2, and C) IDH3 of kinetoplastids. MrBayes topology of phylogenetic trees is 
shown, onto which posterior probabilities (PP) and ultrafast bootstrap support (UFB) values from IQ-TREE are overlayed. Only support values PP ≥ 0.8 and 
UFB ≥ 50% are shown. Protein localization prediction and measured IDH activities are shown in circles as explained in the graphical legend. Protein localization 
predictions were performed for all sequences (supplementary table S1, Supplementary Material online), whereas IDH activities were measured for species in 
bold (supplementary table S2, Supplementary Material online). In case of Blastocrithidia nonstop, only one sequence was identified but different activities were 
measured in mitochondrial and cytosolic fractions; therefore, two colored circles are shown. Note the data from Paratrypanosoma sp. EC233 and 
Wallacemonas raviniae are unavailable or very fragmented; therefore, for phylogenetic analyses, P. confusum and W. rigidus/W. collosoma were used instead 
(only species names are in bold in these cases). For full trees in Newick format and alignments, see supplementary Data S1 to S3, Supplementary Material
online.

IDHs in kinetoplastids                                                                                                                                                       GBE

Genome Biol. Evol. 16(3) https://doi.org/10.1093/gbe/evae042 Advance Access publication 6 March 2024                                        3

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/16/3/evae042/7623289 by U

niversity of O
strava user on 19 M

arch 2024

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae042#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae042#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae042#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae042#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae042#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae042#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae042#supplementary-data


Distribution of IDH Activity in the Cell

Since NAD+ does not appear to be a main cofactor for IDH 
activities neither in cytosol nor in mitochondrion of 
trypanosomatids, the comparison between cellular 

compartments was made only with NADP+ (Fig. 3C; 
supplementary table S2, Supplementary Material online). 
We recorded lower NADP+-dependent IDH activity in the 
mitochondrion when compared to the cytosol for 
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FIG. 2.—Phylogenetic analysis of IDH proteins. A) Unrooted full tree (see supplementary Data S4, Supplementary Material online for the tree in Newick 
format and alignment). B) Part of the tree encompassing kinetoplastids’ IDH1 and IDH2. C) Part of the tree encompassing kinetoplastids’ IDH3. Support values 
are shown as SH-aLRT and ultrafast bootstrap supports if ≥80% and ≥95%, respectively.
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A. deanei, B. nonstop, C. brevicula, C. thermophila, 
H. tarakana, L. mexicana, L. seymouri, N. esmeraldas, 
Paratrypanosoma sp., Vickermania ingenoplastis, and W. ra-
viniae. Some species (J. drosophilae, Leptomonas pyrrhocoris, 
Obscuromonas modryi, Phytomonas serpens, S. podlipaevi, 
and T. brucei) showed comparable NADP+-dependent IDH 
activities in both fractions. The only species showing higher 
NADP+-dependent IDH activity in mitochondrion than in 
cytosol was B. ayalai.

Dual Localization of IDH2

Possible dual localization of IDH2 was indicated by two 
observations. Firstly, B. nonstop, O. modryi, P. serpens, 
and V. ingenoplastis bear only one copy of IDH enzyme 
(specifically, IDH2) unambiguously predicted to mito-
chondrion in O. modryi, but to mitochondrion and cytosol 
in the remaining species (Fig. 1; supplementary table S1, 
Supplementary Material online). In the latter organisms, 
one enzyme appears to operate in two compartments 
(Fig. 3C). The purity of fractions was also checked to en-
sure no cross-contamination (supplementary fig. S1, 
Supplementary Material online). We cannot rule out the 
dual localization of IDH2 in other trypanosomatids 
(Fig. 1), but the presence of either IDH1 or IDH3 makes it 
impossible to unambiguously assign the cytosolic activity 
in these species. Secondly, although NAD+-dependent 
mitochondrial IDH3 is absent in T. brucei, we found low 
activities with both cofactors in the mitochondrial fraction 
(Fig. 3B). This could be explained by the activity of IDH2 
with dual specificity for cofactors. In the whole data set 
(except for L. mexicana), we determined mitochondrial 
NADP+-dependent IDH activity that can be attributed to 
IDH2 (Fig. 3B; supplementary table S2, Supplementary 
Material online).

Discussion
In this work, we present a comprehensive analysis of IDH en-
zymes in kinetoplastids and demonstrate their rather complex 
evolutionary history. The most parsimonious explanation of 
the existing data is that the last common ancestor of 
Trypanosomatidae and Bodonidae was equipped with two 
isoforms of this enzyme (NADP+-dependent IDH1 with pos-
sibly dual localization in the cytosol and mitochondrion and 
NADP+-dependent mitochondrial IDH2) following the loss 
of mitochondrial NAD+-dependent IDH3, which is present 
in other related taxa. While IDH2 was retained in the 
evolution of trypanosomatids, IDH1 was lost upon separation 
of Trypanosoma spp. (Skalický et al. 2017) and replaced 
by the mainly NADP+-dependent cytosolic IDH3 of proteo-
bacterial origin in all the derived lineages. The bacterial 
origin of IDH3 has been already suggested before 
(Andrade-Alviárez et al. 2022). In the same paper, a different 
evolutionary pattern of IDH enzymes was described for the 

sister group of diplonemids, in which the loss of IDH2 was 
compensated by the duplication of IDH1.

We have observed different distributions of 
NADP+-dependent IDH activities in the studied species 
(Fig. 3C): (I) elevated conversion of NADP+ into NADPH in 
the cytosol, (II) similar levels of NADP+ conversion in 
both compartments, and (III) elevated conversion of 
NADP+ into NADPH in the mitochondrion. This could 
reflect different metabolic needs and compartmentaliza-
tion of the enzyme (Lewis et al. 2014; Kovářová and 
Barrett 2016).

The data on generally low or absent NAD+-dependent 
IDH activities in kinetoplastids from this study agree with 
previous results (Meade et al. 1984; Durieux et al. 1991) 
and further confirm the existence of a noncanonical TCA 
cycle in Trypanosomatidae (van Weelden et al. 2003; 
Besteiro et al. 2005). Notably, Leishmania promastigotes 
preferentially catabolize glucose via glycolysis, succinate 
fermentation, and a full TCA cycle (Louassini et al. 1999; 
Saunders et al. 2014) implying that the TCA cycle is not a 
fixed pathway, as was thought at the times of its discovery, 
but it can be rerouted in response to the changing environ-
mental cues (Lane 2022). The TCA cycle in the studied spe-
cies is actually noncyclic because of the low activities of 
aconitase and IDH in comparison with other TCA enzymes 
leading to diversion of the metabolites by more active en-
zymes (van Hellemond et al. 2005). In line with this, the ac-
cumulation of reactive oxygen species in mitochondria was 
recently associated with an increased NADPH/NADH ratio 
and the buildup of 2-hydroxyglutarate, a metabolite of 
α-ketoglutarate (Xiao et al. 2018). Under changing environ-
mental conditions that many trypanosomatids experience 
during their life cycle, the reduction of NAD+-dependent 
IDH activity appears metabolically justified. In the presented 
work, the only deviation from the strict NADP+ depend-
ence of mitochondrial IDH activity was documented in 
J. drosophilae making this underinvestigated species a 
good candidate for further metabolomic studies. 
Conspicuously, overexpressed and biochemically purified 
T. brucei and L. mexicana IDHs demonstrated dual cofac-
tor specificity (Wang et al. 2017; Giordana and Nowicki 
2020), but the data presented here suggest that the 
NAD+ dependence of these enzymes is likely to be an in 
vitro artifact.

Taking together, our results on metabolic variability 
across Trypanosomatidae warrant future follow-up studies 
in this important group of eukaryotic parasites. Indeed, a 
previous report published by our group posited that similar-
ities in mitochondrial metabolism between species of 
Trypanosomatidae do not always correlate with their phylo-
genetic relatedness implying that these traits might be 
shaped by convergent evolution (Škodová-Sveráková 
et al. 2015; Opperdoes et al. 2021). This observation can 
now be extended onto cytosolic metabolism and 
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exemplified by IDHs. Yet, it remains to be investigated how 
universal this rule is.

Materials and Methods

Sequence Searches and Targeting Predictions

The isocitrate/isopropylmalate dehydrogenase hidden 
Markov model profile PF00180 from the Pfam v. 36.0 data-
base (Mistry et al. 2021) was used for HMMER v. 3.3.2 
(Eddy 2011) search in the genome-derived protein data 
sets of kinetoplastids (Albanaz et al. 2023; Kostygov et al. 
2024). The search retrieved 62 proteins, which were then 
used as queries in tBLASTn v. 2.13.0 (Camacho et al. 
2009) searches in genomes for which no proteomes were 
available or in the cases when no protein hit was retrieved. 
The gene boundaries were determined and the protein se-
quences were retrieved using Artemis v. 18.1 (Carver et al. 
2012). A total of 90 protein sequences from 49 kinetoplas-
tid species were collected (supplementary table S1, 
Supplementary Material online). The subcellular localiza-
tion predictions of IDH proteins were performed by 
TargetP v. 2.0 (Armenteros et al. 2019), NommPred v. 0.3 
(Kume et al. 2018), and DeepLoc v. 2.0 (Thumuluri et al. 
2022).

Phylogenetic Analyses

The data set of 90 kinetoplastid IDH sequences 
(supplementary table S1, Supplementary Material online) 
was aligned by MAFFT v. 7.508 (Katoh and Standley 
2013) using the L-INS-i method. The resulting alignment 
was trimmed by TrimAl v. 1.4.rev15 (Capella-Gutiérrez 
et al. 2009) using the -automated1 option optimized for 
phylogenetic inferences. The Bayesian analysis was per-
formed using MrBayes v. 3.2.7a (Ronquist et al. 2012) un-
der a mixed amino acid model, with 20 million Markov 
chain Monte Carlo generations and four gamma rate cat-
egories. The sampling frequency was set to every 1,000 
generations. The first 25% of the runs were discarded as 
burn-in. The maximum-likelihood phylogenetic analysis 
was performed in IQ-TREE v. 1.6.12 (Nguyen et al. 2015) 
applying the posterior mean site frequency method 
(Wang et al. 2018) and the LG + C20 + F + G model, with 
the guide tree inferred in default settings except for adding 
protein mixture models (-madd C10, C20, C30, C40, C50, 
C60, LG4M, LG4X, LG + C20 + F + G, LG + C40 + F + G, LG  
+ C60 + F + G) to the model selection process using 
ModelFinder (Kalyaanamoorthy et al. 2017). The LG +  
C20 + F + G model was selected for the guide tree as the 
best fitting according to the Bayesian information criterion 
(Evans and Sullivan 2011). The branch supports were esti-
mated with 1,000 standard bootstrap replicates (Hoang 
et al. 2018). Bootstrap support values were overlaid onto 
the MrBayes tree topology with posterior probabilities. To 

increase the support values at the backbone of the tree, 
we performed separate phylogenetic analyses for the two 
main clades (IDH1 + 2 and IDH3) using the same methods 
and parameters as above, except for inferring the guide 
tree using the LG + F + G model.

To investigate the origin of kinetoplastid IDH proteins, 
their sequences were used in BLASTp searches (e-value cut-
off of 10−5) against the NCBI nonredundant database ex-
cluding Kinetoplastea taxids. A maximum of 100 hits per 
sequence was collected. The retrieved 1,413 sequences 
were deduplicated using MMseqs2 v. 14 (Steinegger and 
Söding 2017) with a minimum sequence identity of 99% 
and a minimum bidirectional coverage of 50%. The result-
ing data set of 958 sequences was added to the kinetoplas-
tid one, aligned, and trimmed as described above. The 
maximum-likelihood phylogenetic tree was inferred in 
IQ-TREE using the LG + C20 + F + G model, with 1,000 re-
plicates for ultrafast bootstraps (Hoang et al. 2018) and 
Shimodaira–Hasegawa approximate likelihood ratio test 
(SH-aLRT) (Guindon et al. 2010) and a maximum of 5,000 
iterations.

Strains and Cultivation Conditions

Trypanosoma brucei 29-13 was grown at 27 °C in SDM-79 
(Thermo Fisher Scientific, Waltham, USA) supplemented 
with 10% (v/v) fetal bovine serum (Biosera, Cholet, 
France), 2-μg/mL hemin (Merck, Darmstadt, Germany), 50 
U/mL penicillin, and 50-μg/mL streptomycin (both from 
Biowest, Nuaillé, France). Sergeia podlipaevi CER4 was 
grown at 23 °C in BHI medium (VWR/Avantor, Radnor, 
USA) supplemented as above. Paratrypanosoma sp. 
EC233, B. ayalai B08-376, V. ingenoplastis CP21, W. ravi-
niae ECU-09, A. deanei CT-IOC-044, J. drosophilae 
Finn02, P. serpens 9T, H. tarakana OSR18, O. modryi 
Fi15, B. nonstop P57, N. esmeraldas E262, L. mexicana 
MNYC/BZ/62/M379, L. seymouri ATCC 30220, L. pyrrho-
coris H10, C. brevicula S14, and C. thermophila 
CT-IOC-054 were grown at 23 °C in Schneider’s 
Drosophila medium (Biowest) supplemented as above. 
Cells were collected in the exponential phase of growth (1 
to 2 × 107 cells/mL) for all experiments. Species identity 
was confirmed as in Yurchenko et al. (2016).

Isolation of Mitochondria-Enriched Fraction

Cells were pelleted (1,000 × g, 10 min, 4 °C), washed in ice- 
cold PBS, and aliquoted. Approximately 5 × 108 cells (1 ali-
quot) were resuspended in 1.5-mL NET buffer (150 mM 
NaCl, 100 mM EDTA, and 10 mM Tris-HCl pH 8) and subse-
quently pelleted at 16,000 × g for 10 min at 4 °C. The pellet 
was resuspended in 1.5-mL DTE buffer (1 mM Tris-HCl pH 
7.9 and 1 mM EDTA) and passed through a 25G needle 
twice, and in the second step 180 μL of 60% (w/v), sucrose 
was added. The sample was centrifuged at 16,000 × g for 
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10 min at 4 °C. The pellet was resuspended in 500-μL of 
STM buffer (250 mM sucrose, 20 mM Tris-HCl pH 7.9, 
and 2 mM MgCl2), and 10 U of DNAse I (Merck) was added. 
The reaction was incubated for 30 min on ice and stopped 
with the addition of 500 μL of STE buffer (250 mM sucrose, 
20 mM Tris-HCl pH 7.9, and 2 mM EDTA). The sample was 
pelleted (16,000 × g, 10 min, 4 °C), and the pellet was 
washed twice in the ice-cold STE buffer and stored at 
−80 °C. The preparation of mitochondria-enriched fraction 
was performed for all the analyzed strains in three biologic-
al replicates.

Preparation of Mitochondrial Lysate and Western 
Blotting

Isolated mitochondria-enriched fraction was resuspended 
in 0.5 M aminocaproic acid (ACA) (AppliChem/ITW, 
Darmstadt, Germany) and 2% (w/v) dodecylmaltoside 
(AppliChem/ITW) and kept on ice for 30 min. The lysate was 
then centrifuged at 20,000 × g for 10 min at 4 °C, and the pro-
tein concentration was determined by Pierce BCA Protein 
Assay Kit (Thermo Fisher Scientific).

The purity of mitochondrial fraction was confirmed by im-
munoblotting of T. brucei fractions probed against the glyco-
somal and mitochondrial proteins triosephosphate 
isomerase (TIM, glycosomal marker) and heat shock protein 
70 (Hsp70, mitochondrial marker) with rabbit polyclonal 
anti-TIM (Galland et al. 2007) (1:5,000, provided by 
P. Michels) and mouse monoclonal anti-Hsp70 (Panigrahi 
et al. 2008) (1:5,000, provided by J. Lukeš) antibodies. 
Mouse monoclonal anti-α-tubulin antibody (Sigma-Aldrich/ 
Merck, Darmstadt, Germany) diluted 1:10,000 was used 
for loading control as in Kraeva et al. (2014).

Preparation of Cytosolic Lysate

Cells were pelleted at 1,000 × g for 10 min at 4 °C and 
washed in ice-cold PBS. The resulting pellet was resus-
pended in ice-cold 0.5 M ACA. The protein concentration 
was determined by Pierce BCA Protein Assay Kit, and the 
cells in ACA were incubated with 0.1 mg of digitonin per 
1 mg of total proteins for 4 min at room temperature as 
in the previously published papers (Castro et al. 2010; 
Schenk et al. 2021). Lysates were centrifuged at 
16,000 × g for 5 min at 4 °C, and the resulting superna-
tants were quantified by Pierce BCA Protein Assay Kit. 
The cytosolic lysate was prepared for all the analyzed strains 
in three biological replicates. Please note that under the 
conditions used, the cytosolic fraction contained small or-
ganelles, such as glycosomes. Nevertheless, they are not 
likely to affect the downstream analyses because, based 
on the studies in other trypanosomatids (Villafraz et al. 
2021; Wargnies et al. 2021), permeabilization of glycoso-
mal membranes requires higher concentrations of 
digitonin.

IDH Activity Assay

The IDH activity was measured as in Giordana and Nowicki 
(2020) as a production of NAD(P)H at 340 nm for 2 min in a 
reaction buffer containing 75 mM Tris-HCl pH 7.5, 0.5 mM 
MnCl2, and 5 mM isocitrate. The reaction (final volume 
200 μL) contained ∼80 μg of total proteins and was in-
itiated by adding of NAD(P)+ to the final concentration of 
0.5 mM. One unit is equal to 1 nmol of produced NAD(P)H 
per min per milligram of total protein. All measurements 
were performed in three biological replicates with at least 
three technical replicates each.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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